Dissecting the roles of MuB in Mu transposition: ATP regulation of DNA binding is not essential for target delivery.

نویسندگان

  • Caterina T H Schweidenback
  • Tania A Baker
چکیده

Collaboration between MuA transposase and its activator protein, MuB, is essential for properly regulated transposition. MuB activates MuA catalytic activity, selects target DNA, and stimulates transposition into the selected target site. Selection of appropriate target DNA requires ATP hydrolysis by the MuB ATPase. By fusing MuB to a site-specific DNA-binding protein, the Arc repressor, we generated a MuB variant that could select target DNA independently of ATP. This Arc-MuB fusion protein allowed us to test whether ATP binding and hydrolysis by MuB are necessary for stimulation of transposition into selected DNA, a process termed target delivery. We find that with the fusion proteins, MuB-dependent target delivery occurs efficiently under conditions where ATP hydrolysis is prevented by mutation or use of ADP. In contrast, no delivery was detected in the absence of nucleotide. These data indicate that the ATP- and MuA-regulated DNA-binding activity of MuB is not essential for target delivery but that activation of MuA by MuB strictly requires nucleotide-bound MuB. Furthermore, we find that the fusion protein directs transposition to regions of the DNA within 40-750 bp of its own binding site. Taken together, these results suggest that target delivery by MuB occurs as a consequence of the ability of MuB to stimulate MuA while simultaneously tethering MuA to a selected target DNA. This tethered-activator model provides an attractive explanation for other examples of protein-stimulated control of target site selection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An ATP-ADP switch in MuB controls progression of the Mu transposition pathway.

MuB protein, an ATP-dependent DNA-binding protein, collaborates with Mu transposase to promote efficient transposition. MuB binds target DNA, delivers this target DNA segment to transposase and activates transposase's catalytic functions. Using ATP-bound, ADP-bound and ATPase-defective MuB proteins we investigated how nucleotide binding and hydrolysis control the activities of MuB protein, impo...

متن کامل

MuB gives a new twist to target DNA selection

Transposition target immunity is a phenomenon observed in some DNA transposons that are able to distinguish the host chromosome from their own DNA sequence, thus avoiding self-destructive insertions. The first molecular insight into target selection and immunity mechanisms came from the study of phage Mu transposition, which uses the protein MuB as a barrier to self-insertion. MuB is an ATP-dep...

متن کامل

DNA transposition target immunity and the determinants of the MuB distribution patterns on DNA.

MuB, an ATP-dependent DNA-binding protein, is critical for the selection of target sites on the host chromosome during the phage Mu transposition. We developed a multichannel fluidic system to study the MuB-DNA interaction dynamics at the single DNA molecule level by total internal reflection fluorescence microscopy. We analyzed the distribution of MuB along DNA during the assembly and disassem...

متن کامل

Transposition of insertion sequence IS256Bsu1 in Bacillus subtilis 168 is strictly dependent on recA.

We developed an insertion sequence transposition detection system called the "jumping cat assay" and applied it to the Bacillus subtilis chromosome using IS256Bsu1 derived from B. subtilis natto. The high frequency of transposition enabled us to explore host factors; combining the assay and genetic analyses revealed that recA is essential for the transposition of IS256Bsu1. Detailed analyses us...

متن کامل

The role of MuB in selecting transposition targets of bacteriophage

Phage Mu transposes promiscuously, employing MuB protein for target capture. MuB forms stable filaments on A/T-rich DNA, and a correlation between preferred MuB binding and Mu integration has been observed. We have investigated the relationship between MuB-binding and Mu insertion into ‘hot’ and ‘cold’ Mu targets within the E. coli genome. Although higher binding of MuB to select hot versus col...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 34  شماره 

صفحات  -

تاریخ انتشار 2008